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Abstract

We measure the cosmological dependence of the first order power spectrum response to a long wavelength

isotropic perturbation using the separate universe simulation method. As a first step, we limit ourselves

to explore the cosmological dependence on matter density parameters Ωm. By taking the amplitude of

perturbation to be δL = ±0.05 for all cosmologies, we find that the value first order response depends on

Ωm. On k = 2.67 h/Mpc, the response for matter density parameter on Planck’s upper 95% confidence

interval of Ωm = 0.3213 falls 5% below the response for mean density parameter with Ωm = 0.3089, and

the response for density parameter on Planck’s lower constrain Ωm = 0.2965 is about 10% higher than that

for the mean. These results also indicate the possible dependence of the responses on other cosmological

parameters, which can be found using the same method as we employed here. The cosmological dependence

of the responses, which has been neglected before, can be a concern when taking the response approach to

measure the higher order statistics of the large scale structure.

∗xyu@gustavus.edu
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I. INTRODUCTION

The ΛCDM model has emerged as the paradigm to explain the evolution and the structure

of the Universe. Numerous astronomical observations have tested the model to high accuracy

on scales ranging from a few to thousands of Megaparsecs [1]. In this model the Universe is

spatially flat, homogeneous and isotropic on large scales. It is composed of radiation, ordinary

matter, non-baryonic cold dark matter, and dark energy. The radiation component includes all

the relativistic particles like photons which occupy very small percentage of energy density in

the current universe. The ordinary matter, we call it baryons, constitutes galaxies and large scale

structures that we can directly observe today, occupies about 5% of the energy density. The non-

baryonic cold dark matter (CMD), which only interact gravitationally such that we cannot directly

observe by electromagnetic wave, makes up about 25% of the energy density. The dark energy,

an unknown form of energy which is hypothesized to permeate through space accelerating the

expansion of the universe, constitutes 70% of the energy density. Under the ΛCDM paradigm, the

galaxies and the large-scale structure that can be observed today are grown gravitationally from

tiny, nearly scale-invariant adiabatic Gaussian-distributed fluctuations in the early universe.

Given that only 5% of the energy components of the universe can be directly observe, one

may question the precision of cosmological models with the information merely obtained from

observation. There are several ways to probe cosmological models and constrain parameters. The

statistical information contained in the large scale structure can help us achieve some precision.

The ΛCDM paradigm predicts that the baryons lie within the gravitational potential well of Dark

Matter halos. Therefore, the galaxy distribution follows the Dark Matter Halo distribution by a

bias factor. N-body simulations, which gravitationally evolve tracers of the matter field, are fre-

quently used to predict the large scale structure in the universe. With simulation, we can model the

gravitational behavior of 30% of the energy components of the universe instead of 5% from ob-

servation. By experimenting with different models and comparing their statistical properties with

those from observation, models and parameters can be constrained. A frequently used method to

sample the statistical information in the large scale structure involves n-point correlation functions

of the matter density fluctuation field, defined by δ(~x) = ρ(~x)
ρ̄
−1 at each point ~x in the field, where

ρ̄ is the mean density for the field[2]. The most well-studied of such is the 2-point correlation func-

tion ξ(r) and its Fourier form , the Power Spectrum P (k = 2π
r

), which measures the correlation of

the density contrast in regions of universe that are separated by distance r. In the linear regime of
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structure formation, the Gaussian distributed density field can be entirely described by the power

spectrum. Due to non-linearity in the late universe, the growth of structure on different scales is

no longer scale-independent. The cosmological information encoded in the large scale structured

cannot be completely specified by the power spectrum. Furthermore, different combinations of

cosmological parameters might produce power spectrum of similar shape. Therefore higher or-

der statistics are needed to constrain the cosmological parameters to higher precision. However,

the complexity of modeling n-point functions increases rapidly with the order n, both analytically

through perturbation theory methods and computationally through N-body simulation; it is hence

useful to combine perturbation methods and simulation to tackle higher order statistics.

One approach to capture the long- and short- scale coupling in nonlinear gravitational evolution

is found in the Power Spectrum Responses [3]. These responses measure the fractional changes of

the local power spectrum in the presence of long wavelength density perturbation. We can consider

them as singling out the higher-order long-wavelength terms of the N-point correlation functions

with the long-wavelength modes of density perturbation. The responses can be measured using

the Separate Universe Simulation methods [4] by the fact that the power spectrum in the local

patch under density perturbation is equivalent to the power spectrum of a separated universe with

modified cosmological parameters and scaling factor. Ignoring the cosmological dependence of

responses, previous authors have used the responses to approximate the squeezed limit of N-point

correlation functions[3], and to approach the Power Spectrum Covariance Matrix [5]. However,

these higher order statistics studied by previous authors are known to be dependent on cosmology.

Therefore, the cosmological dependence of the responses, which has never been studied before,

may not be simply negligible. Knowing the dependence of response on cosmological parameters

can help us constrain the statistical error in large scale structure measurement using the response

approach.

In this work, we summarize the basics of N-Body simulation for matter in Section II. We then

introduce the Power Spectrum Responses and their application from the basics of statistical field

theory in Section III. The method of measuring the response is summarized in Section IV. Sections

V and VI present the results we find and conclusions that can be drawn for the cosmological

dependence of the First Order Response. All figures in this work are made by the author.

3



II. THE BASICS OF N-BODY SIMULATION

Cosmological simulation is an important tool in cosmology. With simulations, we can predict

the non-linear regime of large scale structure for various models and cosmological parameters. In

the theory of structure formation, each galaxy resides in a host Dark Matter Halo. On large scales,

the galaxy distribution hence follows the Dark Matter (referred as DM hereafter) Halo distribution

by a bias factor. The baryons, which constitute the galaxies, make up only a small percentage of

gravitationally-coupled matter field. The effects of hydrodynamical baryonic processes on small

scales can be included in the N-body simulation but are ignored for our purpose of study; baryons

and DM are collectively treated as a single collisionless fluid in the simulation. All statistics of the

large scale structure are calculated from simulations in this study. We therefore summarize some

basics of N-body simulation here.

The N-body simulations normally use discrete tracer particles to approximate the distribution

in continuous density field. The dynamics of a tracer particle at location ~xi is meant to represent

the dynamics of the continuous matter around ~xi. These DM tracer particles in simulations can be

described by the collionless Boltzmann equation coupled to the Poisson equation in an expanding

universe [6]. The simulations evolve the tracer particles gravitationally in a box with continuous

boundary condition applied. The gravitational evolution of the particles are characterized by the

two equations [7]. The first one is Poisson equation

∇2Φ(~x) = 4πGa2δρ(~x), (1)

where a is the scale factor due to expansion such that a = 1
1+z

. Larger redshift z means earlier

in time, and z=0 represent the present-day universe. The Poisson equation determines the gravi-

tational potential at each point in the box Φ(~x), given the density fluctuations δρ(~x). The second

one is the force equation

~̈x+ 2H~̇x = −∇Φ(~x), (2)

which tells the particles how to move. The dots on the top of x represent the time derivative of the

tracer particle positions. At each time step in the simulation, the code computes the density field

from the particle positions, uses the density field in the Poisson equation to solve for the potential,

and plugs the potential into the force equation to move the particles. This process is repeated from

some initial redshift zi , until current day z = 0.

4



III. THE POWER SPECTRUM RESPONSES

A. The Random Field and Power Spectrum

The distribution of any random scalar field ρ(~x) can be described by its overdensity δ(~x) at

each point ~x in the field. The overdensity for all points in the field has

∫
P (δ1, δ2, · · · , δn)dδ1dδ2 · · · dδn = 1, (3)

where δ1 = δ( ~x1), and P (δ1, δ2, · · · , δn) is the probability of one certain distribution of overden-

sity in the field. The probability distribution of the overdensity field is specified by its Nth-order

moments:

〈δ1δ2 · · · δN〉 =

∫
δ1δ2 · · · δNP (δ1, δ2, · · · , δN)dδ1dδ2 · · · dδN , (4)

where the 〈〉 denotes the ensemble average of infinite many possible distributions of the field.

However, there is one universe available to observe, which forbid us from obtaining many possible

distributions. Under Ergodic Hypothesis, the ensemble average of many universe is equivalent to

the spatial average taking over all points in one universe, given that the spatial correlation decay

rapidly with increasing separation and many statistically independent volumes exists. Therefore,

the first moment, which corresponds to the expectation value, always have 〈δ〉 = 1
V

∫
V
δ(~x)d3~x =

0. The second moment, which corresponds to the sample variance, is defined to be the two point

correlation function assuming homogeneity and isotropy

ξ(r) = 〈δ(x)δ(x+ r)〉. (5)

Higher order moments indicate e.g. the skewness of the distribution. Infinite many moments

are needed to completely specify a cosmological density field which is non-Gaussian [2].

In the context of large scale structure of the universe, the two point correlation function can

be intuitively interpreted in the following way: consider a galaxy at point ~x, the value for two

point correlation function ξ(r) gives the expected probability of finding another galaxy at around

distance r from ~x compared to a random field. It is convenient to describe a random field with their

Fourier components, such that δ(~k) =
∫
δ(~x)e−i

~k~xd3~x. Hence, adopting the Fourier convention,
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the power spectrum is taken to be the Fourier transform of the two-point correlation function

P (k) = 〈|δ(~k)|2〉 =
1

2π2

∫
ξ(r)

sin kr

kr
r2dr. (6)

During the linear structure formation regime, the distribution of the matter overdensity is Gaus-

sian. Therefore, the N-point probability functions P (δ1, δ2, · · · , δN) can be completely specified

by the two-point correlation function. The higher moments are 0 since there is no skewness in

Gaussian. The initial power spectrum of the universe after inflation can be written as:

Pprimordial(k) = As(
k

k∗
)ns−1, (7)

where As is the amplitude of the primordial curvature power spectrum, k∗ is the pivot scale 0.05

Mpc−1, and ns is the spectral index. The overdensity continues to grow scale-independently in

linear regime of structure formation until the overdensity at some location grows sufficiently large

such that at δ ∼ 1. In the linear regime, the power spectrum can be found as

P (k, t) = Pprimordial(k)T 2(k)D2(t), , (8)

where T (k) is the transfer function describing the linear relationship between the inflaton fluctu-

ation and later perturbations, and D(t) is the linear growth rate with respective to time which can

be calculated from linear density perturbation theory as [8]:

D̈ + 2HḊ − 3

2
H2Ωma

−3D = 0. (9)

When the structure formation enters the nonlinear regime, the overdensity correlations on small

scales grow higher than linear prediction. The growth of structure at different Fourier modes are

coupled to each other. That means, the growth of structure on smaller scale k is affected by the

growth of structure on neighboring modes k′. Hence, Equation 8 can no longer be used to find the

power spectrum; numerical simulations are needed to study the mechanism of structure formation.

The Power Spectrum has been well-measured both in observations and simulations. Figure 1

shows the power spectra of the matter density field from one of the simulation we run. The solid

black line shows the linearly predicted present-day power spectrum, and the dashed lines show the

time evolution of the power spectra, where larger redshift z means earlier in time, and z=0 is the
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Figure 1: The power spectrum of matter density field from simulation at different redshift. As the universe
evolve into present day, the magnitude of power spectrum in the non-linear tail (large k) grow faster than
the linear regime (small k)

present-day. The black dashed line by the simulation deviates from the linear prediction at about

k = 0.1 h/Mpc, meaning that the effect of nonlinear formation appears on scale r = 2π/0.1 '

60h−1Mpc for current universe. The time evolution of dashed lines also indicate that the nonlinear

structure formation affect small scales first, and larger scale enters nonlinear structure formation

regime later.

Another factor that affects the power spectrum is the density of matter component in the uni-

verse Ωm. As shown in the differential equation 9, the matter density parameter shows up in the

source term, indicating that the growth rate in the linear regime is higher for high matter density.

This is confirmed by Figure 2, which shows the linear and nonlinear power spectrum for differ-

ent density parameters. At nonlinear regime, the power spectrum deviates from linear prediction

roughly at the same scales for all density parameters. Therefore, the power spectrum demonstrates

a cosmological dependence in all regime. One may also extrapolate the similar dependence of

nonlinear structure formation on matter density in higher order statistics, which we will explore in

this work with the cosmological response functions.
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Figure 2: The power spectra of matter density field for current redshift from a set of simulation we run with
different matter density parameter.

B. The Response Functions and the Separate Universe Picture

The power spectra of the matter density at low redshifts told us that, as the evolution of the

universe enter the non-linear regime, the growth of structure on different modes are no longer in-

dependent of each other. It is therefore necessary to use higher order statistics to study the growth

of structure in nonlinear regime. However, this is challenging: the number of possible modes in-

creases rapidly with the order of statistics, and the cosmic variance noise within each mode grows

significantly. The above reasons make it computationally expensive to sample higher order statis-

tics. A way to reduce the complexity is to study the power spectrum responses, which measure

the fractional change of the local power spectrum in presence of long-wavelength perturbations.

Figure 3 shows the diagram for small amplitude long-wavelength matter density fluctuation in

universe: the overall power spectrum of the background is unchanged by the fluctuation within

the universe. However, the power spectra measured in local patches of underdense or overdense

regions are modified by the density fluctuation. Within the local patches, the amplitude of pertur-

bation is assumed to be constant. The response functions Rn(k) are defined as the coefficients of

the expansion of the power spectrum in linearly extrapolated initial overdensity δL [3]:
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P (k, t|δL) =
∞∑
n=0

1

n!
Rn(k, t)[δLD̂(t)]nP (k, t), (10)

where P (k, t|δL) is the nonlinear matter spectrum at time t in the presence of an uniform density

perturbation with amplitude δL in the local patch for current time, P (k, t) is the overall power

spectrum in the background universe, and D̂(t) = D(t)
D(t0)

is the modification from linear growth rate

that can be calculated from equation 9.

These responses can be broken down into three contributions by considering the patch under

perturbation to evolve separately from the background universe. The reference density contribu-

tion, which accounts for the difference between power spectra defined with respect to the per-

turbed local patch and with respect to the background universe, corresponds to P (k, t)ref den ≡

[1 + δρ]
2P (k, t|δL), where δρ is the density contrast of the perturbed patch to the background. An-

other contribution is the dilation effect, which accounts for the perturbation in the local scale factor

ã due to long wavelength density perturbation, such that P (k)dilation ≡ [1 + δa]
3P ([1 + δa]k, t|δL),

which δa = ã
a
− 1. The third contribution to the responses comes from the physical changes in

the structure induced by the long-wavelength perturbation, which corresponds to actual physical

coupling between long- and short-wavelength modes. The first two contributions can be calculated

analytically for all scales on any order, and the physical response in the nonlinear regime can be

only quantified numerically through simulation. In this work, we focus on the first order response

R1. Summing up the three contributions for the first order, R1 would have [3]:

R1(k, t) = 1− 1

3

kP ′(k, t)

P (k, t)
+G1(k, t), (11)

where the first term comes from reference density, the second term comes from the dilation effect,

with prime denoting derivatives with respect to k, and the third term G1 is the physical response,

named as the growth-only response.

One way to measure the physical response Gn in N-body simulations is using the separate uni-

verse method[4]. The power spectrum of the local patch under a uniform adiabatic density pertur-

bation is equivalent to the power spectrum in a "separate universe", in which the long-wavelength

perturbation is absorbed in a modified matter density background in the local patch by modifying

the cosmological parameters and curvature. G1 can be then calculated through simulations by
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Figure 3: Diagram for universe with long-wavelength matter density perturbation. The background universe
is represented by the big circle and the patches of universe under perturbation are shown in boxes. The
power spectrum of the background universe is unchanged by the existence of the long-wavelength density
fluctuation within the universe. However, the power spectrum of the local patched are modified by the
perturbation.

G1(k, t) =
1

P (k, t)

[
dP̃ (k, t|δL)

d[δL(t)D̃(t)]

]
δL=0

'
[
P̃ (k, t|δL)

P (k, t)
− 1

]
1

δL(t)D̃(t)
,

(12)

where P̃ (k, t|δL) is the power spectrum measured in the separate universe simulation, and P (k, t)

is the power spectrum of the background universe.

In the linear regime of structure formation, the growth-only response can be also calculated

analytically by replacing power spectra in equation 12 with the square of the linear growth rate

D2(t). The linear first order growth-only response is found to be Glinear
1 = 26

21
[3]. This will be

used later to find the sensitivity of the first order response to the nonlinear structure formation.
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C. Applications

The responses are useful in various measurements of the large scale structure. For the first

order response, the most straight-forward application can be found in measuring the so called

angle-averaged squeezed limit of Bispectrum . The Bispectrum is defined as the Fourier transform

of the three-point correlation function, B(~k, ~k′, ~q) = 〈δ(~k)δ(~k′)δ(~q)〉 for ~k + ~k′ + ~q = 0. The

squeezed limit refer to the cases in which wavenumbers ~k,~k′ are larger and ~q is approaching 0 in

amplitude. Therefore, ~q corresponds to the wavelength of the uniform density perturbation. The

angle-averaged squeezed limit Bispectrum taken over all directions in space is given by[9]:

B(k, k′, q) = 3!R1(k)P (k)PL(q), (13)

where R1(k) is the response, P (k) is the value of short-wavelength mode power spectrum, and

PL(q) is value of the corresponding long wavelength power spectrum.

The Bispectrum has many useful applications. For example, it can be used to constrain in-

flationary models which predict a non-Gaussian component in the distribution of primordial per-

turbations that could not be fully illustrated by the power spectrum [10]. By taking the response

approach for the Bispectrum, the computational complexity is largely reduced.

Another application of the first order response is found in evaluations of the power spectrum

covariance matrix, defined as[11]:

Cov(~k1, ~k2) = 〈P̂ (~k1)P̂ (~k2)〉 − 〈P̂ (~k1)〉〈P̂ (~k2)〉

= CovG(~k1, ~k2) + CovcNG(~k1, ~k2) + CovSS(~k1, ~k2).
(14)

The covariance matrix could be used to quantify the statistical error in measurements of the

power spectrum from upcoming large scale structure surveys. The estimation of the covariance by

simulation only can be cumbersome since many realizations are needed to sample the ensemble

average. An alternatively way is to combine perturbation method and simulations. By doing this,

the calculation of the covariance can be broken down into three contributions as shown above in

Eq.14: the Gaussian (G) covariance, which is the diagonal term that can be calculated directly from

power spectrum; the connected non-Gaussian (cNG) term which is induced by mode-coupling in

nonlinear structure formation [5]; and the super sample covariance (SS) which accounts for the

correlation between the modes that can be observed and modes whose wavelength is larger than
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the survey size. This may happen when the observed region in survey is embedded in a large-

scale super-survey overdensity, which is the same as the case which defines the power spectrum

responses for a patch of universe is embedded in a region under long wavelength perturbation.

Therefore, the super sample covariance can be completely captured by the first-order responses.

For the angle-averaged spectra and isotropic survey window, the covariance can be obtained by

[9]:

CovSS(k1, k2) =

[
1

V 2

∫
d3~q

(2π)3
|W̃ (~q)|2PL(q)

]
×R1(k1)P (k1)R1(k2)P (k2),

(15)

where W̃ (~q) is the Fourier transform of the survey window function, V is the volume of the

survey, and the P (k)s are the theoretical predictions for the values of power spectrum at k1 and k2

respectively.

Given that the growth of structure on different scales depends on cosmological parameters, Bis-

pectrum and Covariance matrix are also cosmological dependent. In taking the response approach

for these measurement, it is therefore necessary to take the possible cosmological dependence of

R1 into consideration. However, previous authors have been assuming the cosmological depen-

dence of R1 to be negligible. The goal of this work is to investigate if cosmological dependence

of responses is a concern to evaluate higher order statistics.

IV. METHODOLOGY

In order to quantify the dependence of first order response function on different matter density

parameters, cosmologies with different Ωm are matched by the same primordial density power

spectrum Pprimordial(k) = As(
k
k∗

)ns−1. This is accomplished by the Boltzmann-Einstein code

CAMB[12] in which we specify the parameters As and ns. The CAMB code calculates the linear

matter power spectrum for current time according to equation 8 by specifying also the following

cosmological parameters: Ωbh
2, Ωch

2, Ωνh
2, and Ωk, which are respectively the density parame-

ter for baryon, Cold Dark Matter, cosmic neutrino, and curvature. h is the Hubble rate such that

H = 100hkm/s
Mpc . The matter density parameter can be obtained by Ωm = (Ωbh

2 +Ωch
2 +Ωνh

2)/h2.

In this work, we approximate the cosmic neutrinos to be massless Ων = 0.
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For each set of Ωm, the initial conditions of the simulations (ie, the initial position and velocity

distribution of simulation tracer particles) are created both in fiducial cosmology and in the sepa-

rate universes. This is done by the ic_curved code [4] which reads the linear power spectrum at

current redshift from CAMB’s calculation, and rescale it to the initial condition zi = 49 for each

cosmology with [D̃(ãi)D̃(ã = 1)/D(a = 1)]2. The ic_curved code also calculates the rescaled

box size L̃ and the cosmological parameters [Ω̃, h̃] in the separate universe for given amplitude

of long-wavelength perturbation δL0, particle number Np, box size L, and corresponding fiducial

parameters [Ω, h]. It then generates a Gaussian realization of the density field that matches the

linear matter power spectrum at z = 49 and the rescaled parameters for each cosmology.

The Gadget-2 code [6] is used to carry out the N-body simulation. For each simulation,

Gadget-2 reads the initial positions and velocities of particles from the Gaussian realization gen-

erated by ic_curved, and evolves the particles gravitationally from initial condition to current time

in the cubic box with size specified by the initial condition. Gadget-2 writes snapshots for the

particle positions and velocities at redshifts specified by the user. The matter power spectrum for

each snapshot is measured by the Powmes [13] code.

In this work, we adopt a flat ΛCMD cosmology with Ωm = 0.3089, h = 0.6774, ns = 0.9667,

and As = 2.142 × 10−9 from PLANCK observation [14] for the reference fiducial cosmology.

Ωm= 0.2 and Ωm= 0.4 are chosen to investigate the cosmological dependence. For all Ωm values,

uniform density perturbation with δL = ±0.05 is taken for the separate universe simulations. For

each cosmology, 5 realizations of the Gaussian random field with 2563 particles are run in 300

h−1Mpc box. For one set of simulations, we keep the random seed for realization to be the same,

and increase the mass resolution to 5123 particles and box size to 800 h−1Mpc respectively for use

as a convergence test.

V. RESULT

A. The Convergence tests

We ran one realization of the simulation with 5123 particles in 800 h−1Mpc box to check its

convergence with linear prediction for G1 on large scales. It is predicted that, on some sufficiently

large scale, the simulation should agree with linear prediction Glinear
1 = 26

21
. However, in smaller

boxes, the simulation might not be able to sample the response on such scale due to sampling
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Figure 4: Convergence Test for Box sizes. Top: The power spectrum of matter density field at redshift z=0
with 5123 particles in 300 h−1Mpc and 800 h−1Mpc box. Middle: first order growth only response function
G1 at redshift z=0 with 5123 particles in 300 h−1Mpc and 800 h−1Mpc box. Bottom: The relative difference
in power spectrum and in response of 800 h−1Mpc box simulation from 300 h−1Mpc box simulation.

variance and lack of modes on large scales. As shown in the middle panel of Figure 4, the 800

h−1Mpc box simulation agrees with the linear prediction up to k = 0.05 h/Mpc, where nonlinearity

start to have a effect on G1. Therefore, our simulations with Gadget can be trusted for validity.

The 300 h−1Mpc box simulation with one realization are not able to sample with precision at

such large scale due to lack of modes, which explains the divergence from linear prediction. For

the same random seed at initial condition, the first order response has better convergence than

the power spectrum on large scale for different box size as shown in the lower panel of Figure

4. With averaging 5 realization in 300 h−1Mpc box, the measured G1 also agree with linear
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prediction on scale up to k = 0.05 h/Mpc at redshift z = 0, as shown in lower left panel of Figure

6. Therefore, the 300 h−1Mpc box simulation can be trusted down to its fundamental mode for

measuring responses.

Convergence test against particle number is carried out to determine the smallest scale in k-

space that can be trusted for the 2563 particles in 300 h−1Mpc box simulations. As shown in

figure 5, the power spectrum in 300 h−1Mpc box for 2563 particles diverges from that for 5123

particles for z ≥ 2, the reasons for this discrepancy are unknown. Here, we skip a thorough

investigation of this and focus on simulation output at redshifts z=1, 0.5 and 0, where the two

mass resolutions agree well. At small scale, simulations with 2563 and 5123 particles agrees with

each other for both power spectrum and first order response functions. The Nyquist frequency for

2563 particles in 300 h−1Mpc is found at k = 2.67 h/Mpc. Hence, our simulations can be trusted

at the range of k = [0.02, 2.67] h/Mpc for redshift z= 1, 0.5 and 0.

B. Dependence on Ωm of the First Order Growth Only Responses

The left panels of Figure 6 show the first order growth only response G1 for different cosmolo-

gies at redshifts z=1, 0.5, and 0 as labeled. The G1 measured from 5 realizations of simulations

for fiducial cosmology with Ωm = 0.3089 is shown in blue curves. The response in fiducial cos-

mology always has a maximum value at each redshift, the value of the maximum response does

not change significantly with time but the scale that the maximum corresponds to moves toward

larger scale as the structure formation approaches current time. This tells us that the scale that is

most impacted by a long wavelength perturbation grows larger as the universe evolves.

The shape of the response is dependent on the cosmological parameter, as shown in the red

curves for Ωm = 0.4 and green curves for Ωm = 0.2: The values of response decrease with

increasing matter density parameter on all scales for all redshifts. The scale that the maximum

response corresponds to grow larger with time for all cosmologies. At each redshift, the scale

that the long wavelength perturbation impact the most is larger for higher density parameter. The

percentage differences of G1 for modified density parameter cosmologies and G1 for fiducial cos-

mology are shown on the right panel. The percentage differences, however, does not change

significantly with different redshifts. The variance in the relative difference predicted by the 5

realizations of simulations grows larger as the structure formation approaches current day. This

can be understand by the fact that as time goes by, the increasing nonlinearity on small scales
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Figure 5: Convergence Test for Particle Numbers. Top: The power spectrum of matter density field at
redshift z= 2, 1, 0.5, and 0 with 2563 and 5123 particles in 300 h−1Mpc box. Bottom: first order response
function at redshift z= 2, 1, 0.5, and 0 with 2563 and 5123 particles in 300 h−1Mpc box.

works to "erase memory" from the initial conditions, which effectively increases the variance in

the N-body simulations for the response measurement. We also notice that the relative difference

is not symmetric from 0 although the density parameters Ωm on 0.2 and 0.4 is almost symmetric

from Ωm = 0.3089. This might be caused by the fact that we use the same absolute magnitude of
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Figure 6: First Order Growth Only ResponseG1 for cosmologies from 5 realizations of the separate universe
simulations with different density parameters (fiducial from Planck, others chosen at Ωm = 0.2 and Ωm =

0.4), and the relative difference in G1 of modified from fiducial at redshifts z=1, 0.5 and 0.

perturbation δL = 0.05 for all three cosmologies, so the relative magnitude of perturbation would

be significantly higher for Ωm = 0.2 than that for Ωm = 0.4.

PLANCK reported the density parameter to be Ωm = 0.3089±0.0062 from recent observation

[14], where the uncertainty represent 1σ. In order to make our response measurements valuable for
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observational purposes, we use linear interpolation to predict the first order growth only responses

G1 for matter density parameters within 95% confidence interval of PLANCK’s prediction. The

result for interpolation at each redshift are shown in Figure 7. The G1 predicted for mean. upper

95% confidence interval, and lower 95% confidence interval of Ωm values from PLANCK are

shown by the solid black line, short black dashed lines, and long black dashed lines respectively.

We also show in the lowest panel of Figure 7 the relative difference of the first order growth only

responses for density parameters at Planck’s limit from that at Planck’s mean for redshift z=0.5:

At k = 2.67 h/Mpc, the response for PLANCK’s upper 2σ limit of density parameter Ωm =

0.3213 is about 5% lower than the response for mean, and the response for lower 2σ limit Ωm =

0.2965 is about 10% higher than the mean. Therefore, the response is cosmological dependent

within PLANCK’s measured range of matter density parameter. However, the difference in theses

responses lies within the statistical uncertainty of our response measurement for the mean density

parameter. More realizations of simulations are needed to narrow down the uncertainty in the

response measurement for each cosmology.

VI. CONCLUSION

In this study, we use N-body simulations and the separate universe method to measure the first

order growth only matter power spectrum response for different matter density parameters Ωm.

The response tells us how in the power spectrum of the local universe changes in presence of a

long-wavelength overdensity perturbation. In this work, the amplitudes of the long-wavelength

perturbation are set to be the same for all density parameters. We measured the responses for

Ωm = 0.2, 0.3089, and 0.4, and we found that the power spectrum response has cosmological

dependence. The values for the response decrease with increasing matter density parameters on

all scale for redshifts z=1, 0.5, and 0 as shown in Figure 6.

In order to make our measurement meaningful for observational purposes, we use linear inter-

polation to predict G1 for cosmological parameters within 95% confidence interval of PLANCK’s

measurement Ωm = 0.3089 ± 0.0062, where the uncertainty represent 1σ. The response is found

to be cosmological dependent within PLANCK’s measured range of matter density parameter as

shown in Figure 7. At redshift z=0.5, the first order response varies by 3% within planckâĂŹs

2σ bounds on k = 1 h/Mpc. On scale of k = 2.67 h/Mpc, the response for Planck’s upper limit

of density parameter Ωm = 0.3213 falls 5% below the response for mean, and the response for
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Figure 7: Predicted cosmological dependence of First Order Growth Only ResponseG1 at redshifts z=1, 0.5
and 0. The solid black lines show the responses for mean density parameter from PLANCK’s measurement.
The dashed black lines shows the responses for density parameters within PLANCK’s 95% confidence
interval Ωm = [0.2965, 0.3213] . The lowest Panel shows the predicted percentage difference in G1 for
density parameters on Planck’s upper and lower limits of confidence interval compared to the mean density
parameter at redshift z=0.5 .
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lower limit Ωm = 0.2965 is about 10% higher than the that for mean. However, the difference in

these responses lies within the statistical uncertainty of the response measured by our simulations

for the mean density parameter. More realizations of simulation are needed to narrow down the

uncertainty in response measurements.

Our results show that the cosmological dependence of the responses can be important when

taking the response approach to measure the higher order statistics of the large scale structure,

which has been ignored in previous studies. More study is needed to robustly determine the

dependence of first order response on matter density parameters. The approach we have taken here

can be also applied to find the cosmological dependence of the responses on other cosmological

parameters (eg h,As, and ns). Precisely finding the cosmological dependence of the responses

can help us further calculate the power spectrum covariance matrix and the N-point correlation

functions with the high accuracy that is expected to achieve in upcoming large-scale structure

surveys.
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